The neurobiology of female puberty

Sergio R. Ojeda, Vincent Prevot, Sabine Heger, Alejandro Lomniczi, Barbara Dziedzic, Alison Mungenast

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


In this review, studies are described indicating that the increase in pulsatile release of gonadotropin releasing hormone that signals the initiation of puberty requires both changes in transsynaptic communication and the activation of glia-to-neuron signaling pathways. The major players in the transsynaptic control of puberty are neurons that utilize excitatory and inhibitory amino acids as transmitters. Glial cells employ a combination of trophic factors and small cell-cell signaling molecules to regulate neuronal function and thus promote sexual development. A neuron-to-glia signaling pathway mediated by excitatory amino acids serves to coordinate the simultaneous activation of transsynaptic and glia-to-neuron communication required for the advent of sexual maturity.

Original languageEnglish (US)
Pages (from-to)15-20
Number of pages6
JournalHormone Research
Issue numberSUPPL. 3
StatePublished - 2003


  • Astroglial cells
  • Glial-neuronal communication
  • Growth factors
  • Hypothalamus
  • Onset of puberty
  • Sexual development

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology


Dive into the research topics of 'The neurobiology of female puberty'. Together they form a unique fingerprint.

Cite this