TY - JOUR
T1 - Transfer of skin microbiota between two dissimilar autologous microenvironments
T2 - A pilot study
AU - Perin, Benji
AU - Addetia, Amin
AU - Qin, Xuan
N1 - Funding Information:
BP received funding by The National Center for Advancing Translational Sciences of the National Institutes of Health (https://ncats.nih.gov, Award Number UL1TR000423), as awarded by the Seattle Children's CCTR Pediatric Pilot Fund Program
Publisher Copyright:
© 2019 Perin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Dysbiosis of skin microbiota is associated with several inflammatory skin conditions, including atopic dermatitis, acne, and hidradenitis suppurativa. There is a surge of interest by clinicians and the lay public to explore targeted bacteriotherapy to treat these dermatologic conditions. To date, skin microbiota transplantation studies have focused on moving single, enriched strains of bacteria to target sites rather than a whole community. In this prospective pilot study, we examined the feasibility of transferring unenriched skin microbiota communities between two anatomical sites of the same host. We enrolled four healthy volunteers (median age: 28 [range: 24, 36] years; 2 [50%] female) who underwent collection and transfer of skin microbiota from the forearm to the back unidirectionally. Using culture methods and 16S rRNA V1-V3 deep sequencing, we compared baseline and mixed ("transplant") communities, at T = 0 and T = 24 hours. Our ability to detect movement from one site to the other relied on the inherent diversity of the microenvironment of the antecubital fossa relative to the less diverse back. Comparing bacterial species present in the arm and mixed ("transplant") communities that were absent from the baseline back, we saw evidence of transfer of a partial DNA signature; our methods limit conclusions regarding the viability of transferred organisms. We conclude that unenriched transfer of whole cutaneous microbiota is challenging, but our simple technique, intended to move viable skin organisms from one site to another, is worthy of further investigation.
AB - Dysbiosis of skin microbiota is associated with several inflammatory skin conditions, including atopic dermatitis, acne, and hidradenitis suppurativa. There is a surge of interest by clinicians and the lay public to explore targeted bacteriotherapy to treat these dermatologic conditions. To date, skin microbiota transplantation studies have focused on moving single, enriched strains of bacteria to target sites rather than a whole community. In this prospective pilot study, we examined the feasibility of transferring unenriched skin microbiota communities between two anatomical sites of the same host. We enrolled four healthy volunteers (median age: 28 [range: 24, 36] years; 2 [50%] female) who underwent collection and transfer of skin microbiota from the forearm to the back unidirectionally. Using culture methods and 16S rRNA V1-V3 deep sequencing, we compared baseline and mixed ("transplant") communities, at T = 0 and T = 24 hours. Our ability to detect movement from one site to the other relied on the inherent diversity of the microenvironment of the antecubital fossa relative to the less diverse back. Comparing bacterial species present in the arm and mixed ("transplant") communities that were absent from the baseline back, we saw evidence of transfer of a partial DNA signature; our methods limit conclusions regarding the viability of transferred organisms. We conclude that unenriched transfer of whole cutaneous microbiota is challenging, but our simple technique, intended to move viable skin organisms from one site to another, is worthy of further investigation.
UR - http://www.scopus.com/inward/record.url?scp=85077332809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077332809&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0226857
DO - 10.1371/journal.pone.0226857
M3 - Article
C2 - 31887174
AN - SCOPUS:85077332809
SN - 1932-6203
VL - 14
JO - PLoS One
JF - PLoS One
IS - 12
M1 - e0226857
ER -