X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

The human copper chaperone HAH1 transports copper to the Menkes and Wilson proteins, which are copper-translocating P-type ATPases located in the trans-Golgi apparatus and believed to provide copper for important enzymes such as ceruloplasmin, tyrosinase, and peptidylglycine monooxygenase. Although a substantial amount of structural data exist for HAH1 and its yeast and bacterial homologues, details of the copper coordination remain unclear and suggest the presence of two protein-derived cysteine ligands and a third exogenous thiol ligand. Here we report the preparation and reconstitution of HAH1 with Cu(I) using a protocol that minimizes the use of thiol reagents believed to be the source of the third ligand. We show by x-ray absorption spectroscopy that this reconstitution protocol generates an occupied Cu(I) binding site with linear biscysteinate coordination geometry, as evidenced by (i) an intense edge absorption centered at 8982.5 eV, with energy and intensity identical to the rigorously linear two-coordinate model complex bis-2,3,5,6-tetramethylbenzene thiolate Cu(I) and (ii) an EXAFS spectrum that could be fit to two Cu-S interactions at 2.16 Å, a distance typical of digonal Cu(I) coordination. Binding of exogenous ligands (GSH, dithiothreitol, and tris-(2-carboxyethyl)-phosphine) to the Cu(I) was investigated. When GSH or dithiothreitol was added to the chaperone during the reconstitution procedure, the resulting Cu(I)-HAH1 remained two-coordinate, whereas the addition of the phosphine during reconstitution elicited a three-coordinate species. When the exogenous ligands were titrated into the Cu(I)-HAH1, all formed three-coordinate adducts but with differing affinities. Thus, GSH and dithiothreitol showed weaker binding, with estimated KD values in the range 10-25 mM, whereas tris-(2-carboxyethyl)-phosphine showed stronger affinity, with a KD value of <5 mM. The implications of these findings for mechanisms of copper transport are discussed.

Original languageEnglish (US)
Pages (from-to)23163-23170
Number of pages8
JournalJournal of Biological Chemistry
Volume278
Issue number25
DOIs
StatePublished - Jun 20 2003

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines'. Together they form a unique fingerprint.

Cite this