α-lipoic acid ameliorates consequences of copper overload by up-regulating selenoproteins and decreasing redox misbalance

Ekaterina Kabin, Yixuan Dong, Shubhrajit Roy, Julia Smirnova, Joshua W. Smith, Martina Ralle, Kelly Summers, Haojun Yang, Som Dev, Yu Wang, Benjamin Devenney, Robert N. Cole, Peep Palumaa, Svetlana Lutsenko

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.

Original languageEnglish (US)
Article numbere2305961120
JournalProceedings of the National Academy of Sciences of the United States of America
Volume120
Issue number40
DOIs
StatePublished - 2023

Keywords

  • Wilson disease
  • copper
  • oxidative stress
  • selenoprotein
  • α-lipoic acid

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'α-lipoic acid ameliorates consequences of copper overload by up-regulating selenoproteins and decreasing redox misbalance'. Together they form a unique fingerprint.

Cite this