Abstract
Virus infection is a complex biological phenomenon for which in vitro experiments provide a uniquely concise view where data is often obtained from a single population of cells, under controlled environmental conditions. Nonetheless, data interpretation and real understanding of viral dynamics is still hampered by the sheer complexity of the various intertwined spatio-temporal processes. In this paper we present a tool to address these issues: a cellular automata model describing critical aspects of in vitro viral infections taking into account spatial characteristics of virus spreading within a culture well. The aim of the model is to understand the key mechanisms of SARS-CoV infection dynamics during the first 24 hours post infection. We interrogate the model using a Latin Hypercube sensitivity analysis to identify which mechanisms are critical to the observed infection of host cells and the release of measured virus particles.
Original language | English (US) |
---|---|
Pages (from-to) | 1798-1807 |
Number of pages | 10 |
Journal | Procedia Computer Science |
Volume | 4 |
DOIs | |
State | Published - 2011 |
Event | 11th International Conference on Computational Science, ICCS 2011 - Singapore, Singapore Duration: Jun 1 2011 → Jun 3 2011 |
Keywords
- Cellular automata
- Infection dynamics
- SARS
- Simulation
ASJC Scopus subject areas
- Computer Science(all)