A thermosensory pathway mediating heat-defense responses

Kazuhiro Nakamura, Shaun F. Morrison

Research output: Contribution to journalArticlepeer-review

173 Scopus citations


Afferent neural transmission of temperature sensation from skin thermoreceptors to the central thermoregulatory system is important for the defense of body temperature against environmental thermal challenges. Here, we report a thermosensory pathway that triggers physiological heat-defense responses to elevated environmental temperature. Using in vivo electrophysiological and anatomical approaches in the rat, we found that neurons in the dorsal part of the lateral parabrachial nucleus (LPBd) glutamatergically transmit cutaneous warm signals from spinal somatosensory neurons directly to the thermoregulatorycommandcenter, the preoptic area (POA). Intriguingly, these LPBd neurons are located adjacent to another group of neurons that mediate cutaneous cool signaling to the POA. Functional experiments revealed that this LPBd-POA warm sensory pathway is required to elicit autonomic heat-defense responses, such as cutaneous vasodilation, to skin-warming challenges. These findings provide a fundamental framework for understanding the neural circuitry maintaining thermal homeostasis, which is critical to survive severe environmental temperatures.

Original languageEnglish (US)
Pages (from-to)8848-8853
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number19
StatePublished - May 11 2010
Externally publishedYes


  • Autonomic nervous system
  • Feedforward
  • Somatosensory
  • Sympathetic
  • Thermoregulation

ASJC Scopus subject areas

  • General


Dive into the research topics of 'A thermosensory pathway mediating heat-defense responses'. Together they form a unique fingerprint.

Cite this