Action spectrum of oxidative reactions mediated by light-activated melanin

Randolph D. Glickman, Benjamin A. Rockwell, Steven L. Jacques

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations


The melanin of the retinal pigment epithelial (RPE) cells is generally thought to have a photoprotective role in the eye, yet it is excited by light to a free radical which can react with cellular components. Soluble proteins extracted from the retina are photo-oxidized by the output of a Xenon arc lamp containing UVA and visible wavelengths. The oxidative damage in this model consists of carbonyl adducts to the peptides, and is proportional to the amount of UVA present. Melanosomes isolated from bovine RPE cells and added to the retinal protein extract partly protect the proteins from photo-oxidation resulting from this broadband exposure. However, if the proteins are instead exposed to the 488 and 514.5 nm outputs of an Argon continuous wave laser, the amount of protein oxidation is markedly increased when melanosomes are present. This observation suggests that the melanin free radical is optimally excited by wavelengths in the blue-green region of the visible spectrum, and in fact the action spectrum for the photo-oxidation of NADPH by laser-excited melanin peaks between 450 and 500 nm. The present data do not distinguish between two alternative hypotheses, i.e. that the apparent action spectrum peak is due to (1) a chromophore different from the one determining the overall optical absorption of melanin, or (2) the lower efficiency of UVA photons in activating melanosomes because of their strong absorption at the solution surface. Nevertheless these data implicate melanin in the so-called 'blue light' retinal hazard.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Number of pages8
ISBN (Print)0819423866
StatePublished - 1997
Externally publishedYes
EventLaser-Tissue Interaction VIII - San Jose, CA, USA
Duration: Feb 9 1997Feb 12 1997

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherLaser-Tissue Interaction VIII
CitySan Jose, CA, USA

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Action spectrum of oxidative reactions mediated by light-activated melanin'. Together they form a unique fingerprint.

Cite this