Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength

Alexandra Aguilar-Perez, Rafael Pacheco-Costa, Emily G. Atkinson, Padmini Deosthale, Hannah M. Davis, Alyson L. Essex, Julian E. Dilley, Leland Gomez, Joseph E. Rupert, Teresa A. Zimmers, Roger J. Thompson, Matthew R. Allen, Lilian I. Plotkin

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Pannexins (Panxs), glycoproteins that oligomerize to form hemichannels on the cell membrane, are topologically similar to connexins, but do not form cell-to-cell gap junction channels. There are 3 members of the family, 1–3, with Panx1 being the most abundant. All Panxs are expressed in bone, but their role in bone cell biology is not completely understood. We now report that osteocytic Panx1 deletion (Panx1Δot) alters bone mass and strength in female mice. Bone mineral density after reaching skeletal maturity is higher in female Panx1Δot mice than in control Panx1fl/fl mice. Further, osteocytic Panx1 deletion partially prevented aging effects on cortical bone structure and mechanical properties. Young 4-month-old female Panx1Δot mice exhibited increased lean body mass, even though pannexin levels in skeletal muscle were not affected; whereas no difference in lean body mass was detected in male mice. Furthermore, female Panx1-deficient mice exhibited increased muscle mass without changes in strength, whereas Panx1Δot males showed unchanged muscle mass and decreased in vivo maximum plantarflexion torque, indicating reduced muscle strength. Our results suggest that osteocytic Panx1 deletion increases bone mass in young and old female mice and muscle mass in young female mice, but has deleterious effects on muscle strength only in males.

Original languageEnglish (US)
Article number13903
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength'. Together they form a unique fingerprint.

Cite this