TY - JOUR
T1 - Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation
AU - Francis Stuart, Samantha D.
AU - Wang, Lianguo
AU - Woodard, William R.
AU - Ng, G. Andre
AU - Habecker, Beth A.
AU - Ripplinger, Crystal M.
N1 - Funding Information:
This study was funded in part by the National Institutes of Health R01HL111600 (C.M.R.) and R01HL093056 (B.A.H.), the American Heart Association 16GRNT30960054 (C.M.R.), and the British Heart Foundation BHF RG/17/3/32774 (G.A.N.). S.D.F.S. was supported by a NIGMS-funded Pharmacology Training Program Fellowship (T32GM099608) and the Howard Hughes Medical Institute Gilliam Fellowship for Advanced Study.
Publisher Copyright:
© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Key points: Ageing results in changes to cardiac electrophysiology, Ca2+ handling, and β-adrenergic responsiveness. Sympathetic neurodegeneration also occurs with age, yet detailed action potential and Ca2+ handling responses to physiological sympathetic nerve stimulation (SNS) in the aged heart have not been assessed. Optical mapping in mouse hearts with intact sympathetic innervation revealed reduced responsiveness to SNS in the aged atria (assessed by heart rate) and aged ventricles (assessed by action potentials and Ca2+ transients). Sympathetic nerve density and noradrenaline content were reduced in aged ventricles, but noradrenaline content was preserved in aged atria. These results demonstrate that reduced responsiveness to SNS in the atria may be primarily due to decreased β-adrenergic receptor responsiveness, whereas reduced responsiveness to SNS in the ventricles may be primarily due to neurodegeneration. Abstract: The objective of this study was to determine how age-related changes in sympathetic structure and function impact cardiac electrophysiology and intracellular Ca2+ handling. Innervated hearts from young (3-4 months, YWT, n = 10) and aged (20-24 months, AGED, n = 11) female mice (C57Bl6) were optically mapped using the voltage (Vm,)- and calcium (Ca2+)-sensitive indicators Rh237 and Rhod2-AM. Sympathetic nerve stimulation (SNS) was performed at the spinal cord (T1-T3). β-Adrenergic responsiveness was assessed with isoproterenol (1 μM, ISO). Sympathetic nerve density and noradrenaline content were also quantified. Stimulation thresholds necessary to produce a defined increase in heart rate (HR) with SNS were higher in AGED vs. YWT hearts (5.4 ± 0.4 vs. 3.8 ± 0.4 Hz, P < 0.05). Maximal HR with SNS was lower in AGED vs. YWT (20.5 ± 3.41% vs. 73.0 ± 7.63% increase, P < 0.05). β-Adrenergic responsiveness of the atria (measured as percentage increase in HR with ISO) was decreased in AGED vs. YWT hearts (75.3 ± 22.5% vs. 148.5 ± 19.8%, P < 0.05). SNS significantly increased action potential duration (APD) in YWT but not AGED. Ca2+ transient durations and rise times were unchanged by SNS, yet AGED hearts had an increased susceptibility to Ca2+ alternans and ventricular arrhythmias. β-Adrenergic responsiveness of all ventricular parameters were similar between AGED and YWT. Sympathetic nerve density and noradrenaline content were decreased in the AGED ventricle, but not atria, compared to YWT. These data suggest that decreased responsiveness to SNS in the aged atria may be primarily due to decreased β-adrenergic responsiveness, whereas decreased responsiveness to SNS in the aged ventricles may be primarily due to nerve degeneration.
AB - Key points: Ageing results in changes to cardiac electrophysiology, Ca2+ handling, and β-adrenergic responsiveness. Sympathetic neurodegeneration also occurs with age, yet detailed action potential and Ca2+ handling responses to physiological sympathetic nerve stimulation (SNS) in the aged heart have not been assessed. Optical mapping in mouse hearts with intact sympathetic innervation revealed reduced responsiveness to SNS in the aged atria (assessed by heart rate) and aged ventricles (assessed by action potentials and Ca2+ transients). Sympathetic nerve density and noradrenaline content were reduced in aged ventricles, but noradrenaline content was preserved in aged atria. These results demonstrate that reduced responsiveness to SNS in the atria may be primarily due to decreased β-adrenergic receptor responsiveness, whereas reduced responsiveness to SNS in the ventricles may be primarily due to neurodegeneration. Abstract: The objective of this study was to determine how age-related changes in sympathetic structure and function impact cardiac electrophysiology and intracellular Ca2+ handling. Innervated hearts from young (3-4 months, YWT, n = 10) and aged (20-24 months, AGED, n = 11) female mice (C57Bl6) were optically mapped using the voltage (Vm,)- and calcium (Ca2+)-sensitive indicators Rh237 and Rhod2-AM. Sympathetic nerve stimulation (SNS) was performed at the spinal cord (T1-T3). β-Adrenergic responsiveness was assessed with isoproterenol (1 μM, ISO). Sympathetic nerve density and noradrenaline content were also quantified. Stimulation thresholds necessary to produce a defined increase in heart rate (HR) with SNS were higher in AGED vs. YWT hearts (5.4 ± 0.4 vs. 3.8 ± 0.4 Hz, P < 0.05). Maximal HR with SNS was lower in AGED vs. YWT (20.5 ± 3.41% vs. 73.0 ± 7.63% increase, P < 0.05). β-Adrenergic responsiveness of the atria (measured as percentage increase in HR with ISO) was decreased in AGED vs. YWT hearts (75.3 ± 22.5% vs. 148.5 ± 19.8%, P < 0.05). SNS significantly increased action potential duration (APD) in YWT but not AGED. Ca2+ transient durations and rise times were unchanged by SNS, yet AGED hearts had an increased susceptibility to Ca2+ alternans and ventricular arrhythmias. β-Adrenergic responsiveness of all ventricular parameters were similar between AGED and YWT. Sympathetic nerve density and noradrenaline content were decreased in the AGED ventricle, but not atria, compared to YWT. These data suggest that decreased responsiveness to SNS in the aged atria may be primarily due to decreased β-adrenergic responsiveness, whereas decreased responsiveness to SNS in the aged ventricles may be primarily due to nerve degeneration.
KW - adrenergic
KW - aging
KW - arrhythmia
KW - sympathetic
UR - http://www.scopus.com/inward/record.url?scp=85052500943&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052500943&partnerID=8YFLogxK
U2 - 10.1113/JP276396
DO - 10.1113/JP276396
M3 - Article
C2 - 29938794
AN - SCOPUS:85052500943
SN - 0022-3751
VL - 596
SP - 3977
EP - 3991
JO - Journal of Physiology
JF - Journal of Physiology
IS - 17
ER -