Analysis of yeast MSH2-MSH6 suggests that the initiation of mismatch repair can be separated into discrete steps

Jayson Bowers, Phuoc T. Tran, R. Michael Liskay, Eric Alani

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


The yeast MSH2-MSH6 complex is required to repair both base-pair and single base insertion/deletion mismatches. MSH2-MSH6 binds to mismatch substrates and displays an ATPase activity that is modulated by mispairs that are repaired in vivo. To understand early steps in mismatch repair, we analyzed mismatch repair (MMR) defective MSH2-msh6-F337A and MSH2-msh6-340 complexes that contained amino acid substitutions in the MSH6 mismatch recognition domain. While both heterodimers were defective in forming stable complexes with mismatch substrates, only MSH2-msh6-340 bound to homoduplex DNA with an affinity that was similar to that observed for MSH2-MSH6. Additional analyses suggested that stable binding to a mispair is not sufficient to initiate recruitment of downstream repair factors. Previously, we observed that MSH2-MSH6 forms a stable complex with a palindromic insertion mismatch that escapes correction by MMR in vivo. Here we show that this binding is not accompanied by either a modulation in MSH2-MSH6 ATPase activity or an ATP-dependent recruitment of the MLH1-PMS1 complex. Together, these observations suggest that early stages in MMR can be divided into distinct recognition, stable binding, and downstream factor recruitment steps. (C) 2000 Academic Press.

Original languageEnglish (US)
Pages (from-to)327-338
Number of pages12
JournalJournal of molecular biology
Issue number2
StatePublished - Sep 15 2000


  • ATP
  • MLH1-PMS1
  • MSH2-MSH6
  • Mismatch recognition

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology


Dive into the research topics of 'Analysis of yeast MSH2-MSH6 suggests that the initiation of mismatch repair can be separated into discrete steps'. Together they form a unique fingerprint.

Cite this