@article{63f4fa323154400b9fabce2dca93a8d4,
title = "Association of 25-Hydroxyvitamin D status and genetic variation in the vitamin D metabolic pathway with FEV1 in the Framingham Heart Study",
abstract = "Background: Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults. Methods: We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts. Results: We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P=0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P=0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P<0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P=0.09). Conclusions: Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.",
keywords = "25-hydroxyvitamin D, CYP2R1, FEV, Framingham heart study, Lung function, Vitamin D",
author = "{SUNLIGHT Consortium} and Hansen, {J. G.} and W. Gao and J. Dupuis and O'Connor, {G. T.} and W. Tang and M. Kowgier and A. Sood and Gharib, {S. A.} and Palmer, {L. J.} and M. Fornage and Heckbert, {S. R.} and Psaty, {B. M.} and Booth, {S. L.} and Cassano, {Patricia A.}",
note = "Funding Information: This research was supported by NRSA Institutional Research Training Grant T32-DK-7158-36 (JGH). This research used data from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. Framingham Heart Study (FHS) research was conducted in part using data and resources of the NHLBI and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the FHS investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by NHLBI (contract no. N01-HC-25195) and its contract with Affymetrix for genotyping services (contract no. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. Measurement of vitamin D in the Offspring participants was funded by NIH-NIA AG14759. Funding Information: The 1994 Busselton follow-up Health Study was supported by Healthways, Western Australia. The Busselton Health Study is supported by The Great Wine Estates of the Margaret River region of Western Australia. The study gratefully acknowledges the assistance of the Western Australian DNA Bank (NHMRC Enabling Facility) with DNA samples and the support provided by The Ark at University of Western Australia for this study. The Coronary Artery Risk Development in Young Adults (CARDIA) study was funded by contracts N01-HC-95095, N01-HC-48047, N01-HC-48048, N01-HC-48049, N01-HC-48050, N01-HC-45134, N01-HC-05187, N01-HC-45205, and N01-HC-45204 from NHLBI to the CARDIA investigators. Genotyping of the CARDIA participants was supported by grants U01-HG-004729, U01-HG-004446, and U01-HG-004424 from the NHGRI. Statistical analyses were supported by grants U01-HG-004729 and R01-HL-084099 to MF. The Cardiovascular Health Study was supported by NHLBI contracts HHSN268201200036C, N01 HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at https://chs-nhlbi.org/pi. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The Health, Aging, and Body Composition Study was supported by NIA contracts N01AG62101, N01AG2103, and N01AG62106, NIA grant R01-AG028050, NINR grant R01-NR012459, and in part by the Intramural Research Program of the NIA, NIH. The genome-wide association study was funded by NIA grant 1R01AG032098–01A1 to Wake Forest Health Sciences, and genotyping services were provided by the Center for Inherited Disease Research, which is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was further supported by RC1AG035835. Publisher Copyright: {\textcopyright} 2015 Hansen et al.",
year = "2015",
month = jul,
day = "1",
doi = "10.1186/s12931-015-0238-y",
language = "English (US)",
volume = "16",
journal = "Respiratory Research",
issn = "1465-9921",
publisher = "BioMed Central",
number = "1",
}