Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


Conventional soluble guanylyl cyclases are heterodimeric enzymes that synthesize cGMP and are activated by nitric oxide. Recently, a separate class of soluble guanylyl cyclases has been identified that are only slightly activated by or are insensitive to nitric oxide. These atypical guanylyl cyclases include the vertebrate β2 subunit and examples from the invertebrates Manduca sexta, Caenorhabditis elegans, and Drosophila melanogaster. A member of this family, GCY-35 in C. elegans, was recently shown to be required for a behavioral response to low oxygen levels and may be directly regulated by oxygen (Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A., and Bargmann, C. I. (2004) Nature 430, 317-322). Drosophila contains three genes that code for atypical soluble guanylyl cyclases: Gyc-88E, Gyc-89Da, and Gyc-89Db. COS-7 cells co-transfected with Gyc-88E and Gyc-89Da or Gyc-89Db accumulate low levels of cGMP under normal atmospheric oxygen concentrations and are potently activated under anoxic conditions. The increase in activity is graded over oxygen concentrations of 0-21%, can be detected within 1 min of exposure to anoxic conditions and is blocked by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Gyc-88E and Gyc-89Db are co-expressed in a subset of sensory neurons where they would be ideally situated to act as oxygen sensors. This is the first demonstration of a soluble guanylyl cyclase that is activated in response to changing oxygen concentrations.

Original languageEnglish (US)
Pages (from-to)50651-50653
Number of pages3
JournalJournal of Biological Chemistry
Issue number49
StatePublished - Dec 3 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors'. Together they form a unique fingerprint.

Cite this