Chemical Tools for Lipid Cell Biology

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

ConspectusLipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.

Original languageEnglish (US)
Pages (from-to)1168-1177
Number of pages10
JournalAccounts of Chemical Research
Volume56
Issue number10
DOIs
StatePublished - May 16 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Chemical Tools for Lipid Cell Biology'. Together they form a unique fingerprint.

Cite this