TY - JOUR
T1 - Comparison of measurement methods with a mixed effects procedure accounting for replicated evaluations (COM3PARE)
T2 - Method comparison algorithm implementation for head and neck IGRT positional verification
AU - Roy, Anuradha
AU - Fuller, Clifton D.
AU - Rosenthal, David I.
AU - Thomas, Charles R.
N1 - Funding Information:
CDF received/receives grant support from: the SWOG Hope Foundation Dr. Charles A. Coltman, Jr. Fellowship in Clinical Trials; the National Institutes of Health Paul Calabresi Clinical Oncology Award Program (K12 CA088084) and Clinician Scientist Loan Repayment Program (L30 CA136381-02); Elekta AB/MD Anderson Consortium; GE Medical Systems/MD Anderson Center for Advanced Biomedical Imaging In-Kind Award; the MD Anderson Center for Radiation Oncology Research, and an MD Anderson Institutional Research Grant Program Award. These listed funders/supporters played no role in the study design, collection, analysis, interpretation of data, manuscript writing, or decision to submit the report for publication.
Funding Information:
CDF was supported by the National Institutes of Health Clinical Research Loan Repayment Program (L30 CA136381), National Institute of Biomedical Imaging and Bioengineering (5T32EB000817-04), and the SWOG Hope Foundation Coltman Fellowship. The funder(s) played no role in study design, in the collection, analysis and interpretation of data, in the writing of the manuscript, nor in the decision to submit the manuscript.
Publisher Copyright:
© 2015 Roy et al.
PY - 2015/8/28
Y1 - 2015/8/28
N2 - Purpose: Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. Methods: An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). Results: COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. Conclusions: The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.
AB - Purpose: Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. Methods: An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). Results: COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. Conclusions: The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.
UR - http://www.scopus.com/inward/record.url?scp=84940052411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940052411&partnerID=8YFLogxK
U2 - 10.1186/s12880-015-0074-z
DO - 10.1186/s12880-015-0074-z
M3 - Article
C2 - 26310853
AN - SCOPUS:84940052411
SN - 1471-2342
VL - 15
JO - BMC Medical Imaging
JF - BMC Medical Imaging
IS - 1
M1 - 35
ER -