Cross-species functional alignment reveals evolutionary hierarchy within the connectome

Ting Xu, Karl Heinz Nenning, Ernst Schwartz, Seok Jun Hong, Joshua T. Vogelstein, Alexandros Goulas, Damien A. Fair, Charles E. Schroeder, Daniel S. Margulies, Jonny Smallwood, Michael P. Milham, Georg Langs

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution – even within subnetworks.

Original languageEnglish (US)
Article number117346
StatePublished - Dec 2020


  • Cross-species alignment
  • Default mode network
  • Evolution
  • Hierarchy
  • Joint embedding

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Cross-species functional alignment reveals evolutionary hierarchy within the connectome'. Together they form a unique fingerprint.

Cite this