Dobutamine increases alveolar liquid clearance in ventilated rats by beta-2 receptor stimulation

Fred A. Tibayan, Asha N. Chesnutt, Hans G. Folkesson, Jon Eandi, Michael A. Matthay

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Although it is well known that beta-adrenergic agonist stimulation increases alveolar epithelial sodium and fluid transport, it is not known whether the beta-1 or the beta-2 receptor mediates this effect. Two clinically relevant beta-adrenergic agonists, dopamine (beta-1 agonist) and dobutamine (beta-1 and beta-2 agonist) were used to define the contribution of these two beta-receptors to beta-adrenergic stimulated fluid clearance from the air spaces of the lungs. Alveolar fluid clearance was measured in anesthetized, ventilated rats over one hour after instilling an isosmolar 5% albumin solution in Ringer's lactate with 3 μCi 125I-albumin. The concentrations of the labeled and unlabeled albumin were used to quantify alveolar liquid clearance. Dopamine, whether given intra-alveolar (10-4 M) or intravenously (5-10 μg/kg/min), had no effect. However, both intra- alveolar (10-4 M) and intravenous (5 μg/kg/min) dobutamine increased alveolar liquid clearance by approximately 50% over one hour compared to controls. ICI 118,551, a potent and specific beta-2 antagonist, blocked the effect of dobutamine. The dobutamine effect was blocked by amiloride (10-3 M), an inhibitor of sodium uptake. In summary, the beta-2 receptor mediates beta-adrenergic stimulation of alveolar epithelial sodium and fluid transport.

Original languageEnglish (US)
Pages (from-to)438-444
Number of pages7
JournalAmerican journal of respiratory and critical care medicine
Issue number2 I
StatePublished - 1997
Externally publishedYes

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine
  • Critical Care and Intensive Care Medicine


Dive into the research topics of 'Dobutamine increases alveolar liquid clearance in ventilated rats by beta-2 receptor stimulation'. Together they form a unique fingerprint.

Cite this