Global variation in copy number in the human genome

Richard Redon, Shumpei Ishikawa, Karen R. Fitch, Lars Feuk, George H. Perry, T. Daniel Andrews, Heike Fiegler, Michael H. Shapero, Andrew R. Carson, Wenwei Chen, Eun Kyung Cho, Stephanie Dallaire, Jennifer L. Freeman, Juan R. González, Mònica Gratacòs, Jing Huang, Dimitrios Kalaitzopoulos, Daisuke Komura, Jeffrey R. MacDonald, Christian R. MarshallRui Mei, Lyndal Montgomery, Kunihiro Nishimura, Kohji Okamura, Fan Shen, Martin J. Somerville, Joelle Tchinda, Armand Valsesia, Cara Woodwark, Fengtang Yang, Junjun Zhang, Tatiana Zerjal, Jane Zhang, Lluis Armengol, Donald F. Conrad, Xavier Estivill, Chris Tyler-Smith, Nigel P. Carter, Hiroyuki Aburatani, Charles Lee, Keith W. Jones, Stephen W. Scherer, Matthew E. Hurles

Research output: Contribution to journalArticlepeer-review

3418 Scopus citations

Abstract

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

Original languageEnglish (US)
Pages (from-to)444-454
Number of pages11
JournalNature
Volume444
Issue number7118
DOIs
StatePublished - Nov 23 2006
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Global variation in copy number in the human genome'. Together they form a unique fingerprint.

Cite this