TY - JOUR
T1 - Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer's disease
AU - Manczak, Maria
AU - Kandimalla, Ramesh
AU - Yin, Xiangling
AU - Reddy, P. Hemachandra
N1 - Funding Information:
Work presented in this paper was supported by NIH grants AG042178, AG047812 and NS105473, and the Garrison Family Foundation, CH Foundation and Alzheimer's Association SAGA grant (to P.H.R.).
Publisher Copyright:
© The Author(s) 2018. Published by Oxford University Press. All rights reserved.
PY - 2018/4/15
Y1 - 2018/4/15
N2 - The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Ab) in 12-monthold APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-monthold APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.
AB - The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Ab) in 12-monthold APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-monthold APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.
UR - http://www.scopus.com/inward/record.url?scp=85045446413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045446413&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddy042
DO - 10.1093/hmg/ddy042
M3 - Article
C2 - 29408999
AN - SCOPUS:85045446413
SN - 0964-6906
VL - 27
SP - 1332
EP - 1342
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 8
ER -