HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs

Andrea Da Fonseca Ferreira, Jianqin Wei, Lukun Zhang, Conrad J. Macon, Bernard Degnan, Dushyantha Jayaweera, Joshua M. Hare, Michael A. Kolber, Michael Bellio, Aisha Khan, Yue Pan, Derek M. Dykxhoorn, Liyong Wang, Chunming Dong

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE−/− mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3′UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV.

Original languageEnglish (US)
Article number7567
JournalInternational journal of molecular sciences
Volume24
Issue number8
DOIs
StatePublished - Apr 2023
Externally publishedYes

Keywords

  • ECFCs
  • HIV
  • aging
  • atherosclerosis
  • extracellular vesicles
  • miRNA

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs'. Together they form a unique fingerprint.

Cite this