Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding

Ryan J. Cornelius, Chao Ling Yang, David H. Ellison

Research output: Contribution to journalReview articlepeer-review

8 Scopus citations


The discovery of new genetic mutations that cause hypertension has illuminated previously unrecognized physiological pathways. One such regulatory pathway was identified when mutations in with no lysine kinase (WNK)4, Kelch-like 3 (KLHL3), and cullin 3 (CUL3) were shown to cause the disease familial hyperkalemic hypertension (FHHt). Mutations in all three genes upregulate the NaCl cotransporter (NCC) due to an impaired ability to degrade WNK protein through the cullin-RING-ligase (CRL) ubiquitin-proteasome system. The CUL3 FHHt mutations cause the most severe phenotype, yet the precise mechanism by which these mutations cause the disease has not been established and current proposed models are controversial. New data have identified a possible novel mechanism involving dysregulation of CUL3 activity by the COP9 signalosome (CSN). The CSN interaction with mutant CUL3 is diminished, causing hyperneddylation of the CRL. Recent work has shown that direct renal CSN impairment mimics some aspects of the CUL3 mutation, including lower KLHL3 abundance and activation of the WNK-NCC pathway. Furthermore, in vitro and in vivo studies of CSN inhibition have shown selective degradation of CRL substrate adaptors via auto-ubiquitination, allowing substrate accumulation. In this review, we will focus on recent research that highlights the role of the CSN role in CUL3 mutations that cause FHHt. We will also highlight how these results inform other recent studies of CSN dysfunction.

Original languageEnglish (US)
Pages (from-to)F204-F208
JournalAmerican Journal of Physiology - Renal Physiology
Issue number1
StatePublished - 2020


  • COP9 signalosome
  • Cullin 3
  • Distal nephron
  • Familial hyperkalemic hypertension

ASJC Scopus subject areas

  • Physiology
  • Urology


Dive into the research topics of 'Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding'. Together they form a unique fingerprint.

Cite this