Abstract

Advances in fluorescence microscopy (FM), electron microscopy (EM), and correlative light and EM (CLEM) offer unprecedented opportunities for studying diverse proteins and nanostructures involved in fundamental cell biology. It is now possible to visualize and quantify the spatial organization of cellular proteins and other macromolecules by FM, EM, and CLEM. However, tagging and tracking cellular proteins across size scales is restricted by the scarcity of methods for attaching appropriate reporter chemistries to target proteins. Namely, there are few genetic tags compatible with EM. To overcome these issues we developed Versatile Interacting Peptide (VIP) tags, genetically-encoded peptide tags that can be used to image proteins by fluorescence and EM. VIPER, a VIP tag, can be used to label cellular proteins with bright, photo-stable fluorophores for FM or electron-dense nanoparticles for EM. In this Bio-Protocol, we provide an instructional guide for implementing VIPER for imaging a cell-surface receptor by CLEM. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER (Doh et al., 2019a and 2019b).

Original languageEnglish (US)
Article numbere3414
JournalBio-protocol
Volume9
Issue number21
DOIs
StatePublished - Nov 5 2019

Keywords

  • CLEM
  • Cell biology
  • Electron microscopy
  • Fluorescence
  • Microscopy
  • Peptide
  • Protein tag
  • Quantum dot

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • Plant Science

Fingerprint

Dive into the research topics of 'Imaging viper-labeled cellular proteins by correlative light and electron microscopy'. Together they form a unique fingerprint.

Cite this