TY - JOUR
T1 - Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson’s disease, and matched controls
AU - Shah, Vrutangkumar V.
AU - McNames, James
AU - Mancini, Martina
AU - Carlson-Kuhta, Patricia
AU - Spain, Rebecca I.
AU - Nutt, John G.
AU - El-Gohary, Mahmoud
AU - Curtze, Carolin
AU - Horak, Fay B.
N1 - Funding Information:
This study was supported by the National Multiple Sclerosis Society Mentor Fellowship (MB0027; FBH), and National Institutes of Health Grants from the National Institute on Aging (#1R44AG055388; FBH).
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Background and purpose: Recent findings suggest that a gait assessment at a discrete moment in a clinic or laboratory setting may not reflect functional, everyday mobility. As a step towards better understanding gait during daily life in neurological populations, we compared gait measures that best discriminated people with multiple sclerosis (MS) and people with Parkinson’s Disease (PD) from their respective, age-matched, healthy control subjects (MS-Ctl, PD-Ctl) in laboratory tests versus a week of daily life monitoring. Methods: We recruited 15 people with MS (age mean ± SD: 49 ± 10 years), 16 MS-Ctl (45 ± 11 years), 16 people with idiopathic PD (71 ± 5 years), and 15 PD-Ctl (69 ± 7 years). Subjects wore 3 inertial sensors (one each foot and lower back) in the laboratory followed by 7 days during daily life. Mann–Whitney U test and area under the curve (AUC) compared differences between PD and PD-Ctl, and between MS and MS-Ctl in the laboratory and in daily life. Results: Participants wore sensors for 60–68 h in daily life. Measures that best discriminated gait characteristics in people with MS and PD from their respective control groups were different between the laboratory gait test and a week of daily life. Specifically, the toe-off angle best discriminated MS versus MS-Ctl in the laboratory (AUC [95% CI] = 0.80 [0.63–0.96]) whereas gait speed in daily life (AUC = 0.84 [0.69–1.00]). In contrast, the lumbar coronal range of motion best discriminated PD versus PD-Ctl in the laboratory (AUC = 0.78 [0.59–0.96]) whereas foot-strike angle in daily life (AUC = 0.84 [0.70–0.98]). AUCs were larger in daily life compared to the laboratory. Conclusions: Larger AUC for daily life gait measures compared to the laboratory gait measures suggest that daily life monitoring may be more sensitive to impairments from neurological disease, but each neurological disease may require different gait outcome measures.
AB - Background and purpose: Recent findings suggest that a gait assessment at a discrete moment in a clinic or laboratory setting may not reflect functional, everyday mobility. As a step towards better understanding gait during daily life in neurological populations, we compared gait measures that best discriminated people with multiple sclerosis (MS) and people with Parkinson’s Disease (PD) from their respective, age-matched, healthy control subjects (MS-Ctl, PD-Ctl) in laboratory tests versus a week of daily life monitoring. Methods: We recruited 15 people with MS (age mean ± SD: 49 ± 10 years), 16 MS-Ctl (45 ± 11 years), 16 people with idiopathic PD (71 ± 5 years), and 15 PD-Ctl (69 ± 7 years). Subjects wore 3 inertial sensors (one each foot and lower back) in the laboratory followed by 7 days during daily life. Mann–Whitney U test and area under the curve (AUC) compared differences between PD and PD-Ctl, and between MS and MS-Ctl in the laboratory and in daily life. Results: Participants wore sensors for 60–68 h in daily life. Measures that best discriminated gait characteristics in people with MS and PD from their respective control groups were different between the laboratory gait test and a week of daily life. Specifically, the toe-off angle best discriminated MS versus MS-Ctl in the laboratory (AUC [95% CI] = 0.80 [0.63–0.96]) whereas gait speed in daily life (AUC = 0.84 [0.69–1.00]). In contrast, the lumbar coronal range of motion best discriminated PD versus PD-Ctl in the laboratory (AUC = 0.78 [0.59–0.96]) whereas foot-strike angle in daily life (AUC = 0.84 [0.70–0.98]). AUCs were larger in daily life compared to the laboratory. Conclusions: Larger AUC for daily life gait measures compared to the laboratory gait measures suggest that daily life monitoring may be more sensitive to impairments from neurological disease, but each neurological disease may require different gait outcome measures.
KW - Free-living
KW - Gait
KW - Laboratory
KW - Multiple sclerosis
KW - Parkinson’s disease
UR - http://www.scopus.com/inward/record.url?scp=85097001104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097001104&partnerID=8YFLogxK
U2 - 10.1186/s12984-020-00781-4
DO - 10.1186/s12984-020-00781-4
M3 - Article
C2 - 33261625
AN - SCOPUS:85097001104
SN - 1743-0003
VL - 17
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
IS - 1
M1 - 159
ER -