TY - JOUR
T1 - Loss of the PTCH1 tumor suppressor defines a new subset of plexiform fibromyxoma
AU - Banerjee, Sudeep
AU - Corless, Christopher L.
AU - Miettinen, Markku M.
AU - Noh, Sangkyu
AU - Ustoy, Rowan
AU - Davis, Jessica L.
AU - Tang, Chih Min
AU - Yebra, Mayra
AU - Burgoyne, Adam M.
AU - Sicklick, Jason K.
N1 - Funding Information:
We appreciate funding support from the Surgical Society of the Alimentary Tract (SSAT) Mentored Research Award (S.B.) for salary support and laboratory supplies as well as NIH T32 CA121938 Cancer Therapeutics (CT2) Training Fellowship (S.B.) for salary support. In addition, we appreciate funding support for laboratory supplies provided by Hope for a Cure Foundation (J.K.S.), The Life Raft Group (J.K.S.), Kristen Ann Carr Fund (J.K.S.), Lighting the Path Forward for GIST Cancer Research (J.K.S.), NIH K08 CA168999 (J.K.S.), NIH R21 CA192072 (J.K.S.), and NIH R01 CA226803 (J.K.S.).
Funding Information:
JK.S. has research funding from Novartis Pharmaceuticals, Amgen Pharmaceu‑ ticals and Foundation Medicine. J.K.S. also serves or served as Consultant to the following organizations: Grand Rounds (2015–2018), and Loxo Oncology (2017–2018). These disclosures had no impact on any of the work presented in this manuscript. There are no competing interests to declare by the remaining authors.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/7/30
Y1 - 2019/7/30
N2 - Background: Plexiform fibromyxoma (PF) is a rare gastric tumor often confused with gastrointestinal stromal tumor. These so-called "benign" tumors often present with upper GI bleeding and gastric outlet obstruction. It was recently demonstrated that approximately one-third of PF have activation of the GLI1 oncogene, a transcription factor in the hedgehog (Hh) pathway, via a MALAT1-GLI1 fusion protein or GLI1 up-regulation. Despite this discovery, the biology of most PFs remains unknown. Methods: Next generation sequencing (NGS) was performed on formalin-fixed paraffin-embedded (FFPE) samples of PF specimens collected from three institutions (UCSD, NCI and OHSU). Fresh frozen tissue from one tumor was utilized for in vitro assays, including quantitative RT-PCR and cell viability assays following drug treatment. Results: Eight patients with PF were identified and 5 patients' tumors were analyzed by NGS. An index case had a mono-allelic PTCH1 deletion of exons 15-24 and a second case, identified in a validation cohort, also had a PTCH1 gene loss associated with a suspected long-range chromosome 9 deletion. Building on the role of Hh signaling in PF, PTCH1, a tumor suppressor protein, functions upstream of GLI1. Loss of PTCH1 induces GLI1 activation and downstream gene transcription. Utilizing fresh tissue from the index PF case, RT-qPCR analysis demonstrated expression of Hh pathway components, SMO and GLI1, as well as GLI1 transcriptional targets, CCND1 and HHIP. In turn, short-term in vitro treatment with a Hh pathway inhibitor, sonidegib, resulted in dose-dependent cell killing. Conclusions: For the first time, we report a novel association between PTCH1 inactivation and the development of plexiform fibromyxoma. Hh pathway inhibition with SMO antagonists may represent a target to study for treating a subset of plexiform fibromyxomas.
AB - Background: Plexiform fibromyxoma (PF) is a rare gastric tumor often confused with gastrointestinal stromal tumor. These so-called "benign" tumors often present with upper GI bleeding and gastric outlet obstruction. It was recently demonstrated that approximately one-third of PF have activation of the GLI1 oncogene, a transcription factor in the hedgehog (Hh) pathway, via a MALAT1-GLI1 fusion protein or GLI1 up-regulation. Despite this discovery, the biology of most PFs remains unknown. Methods: Next generation sequencing (NGS) was performed on formalin-fixed paraffin-embedded (FFPE) samples of PF specimens collected from three institutions (UCSD, NCI and OHSU). Fresh frozen tissue from one tumor was utilized for in vitro assays, including quantitative RT-PCR and cell viability assays following drug treatment. Results: Eight patients with PF were identified and 5 patients' tumors were analyzed by NGS. An index case had a mono-allelic PTCH1 deletion of exons 15-24 and a second case, identified in a validation cohort, also had a PTCH1 gene loss associated with a suspected long-range chromosome 9 deletion. Building on the role of Hh signaling in PF, PTCH1, a tumor suppressor protein, functions upstream of GLI1. Loss of PTCH1 induces GLI1 activation and downstream gene transcription. Utilizing fresh tissue from the index PF case, RT-qPCR analysis demonstrated expression of Hh pathway components, SMO and GLI1, as well as GLI1 transcriptional targets, CCND1 and HHIP. In turn, short-term in vitro treatment with a Hh pathway inhibitor, sonidegib, resulted in dose-dependent cell killing. Conclusions: For the first time, we report a novel association between PTCH1 inactivation and the development of plexiform fibromyxoma. Hh pathway inhibition with SMO antagonists may represent a target to study for treating a subset of plexiform fibromyxomas.
KW - GLI1
KW - Gastric mass
KW - Gastrointestinal stromal tumor
KW - Hedgehog pathway
KW - Next generation sequencing
KW - Patched 1
KW - SMO inhibitor
KW - Sonidegib
KW - Submucosal tumor
UR - http://www.scopus.com/inward/record.url?scp=85070833178&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070833178&partnerID=8YFLogxK
U2 - 10.1186/s12967-019-1995-z
DO - 10.1186/s12967-019-1995-z
M3 - Article
C2 - 31362756
AN - SCOPUS:85070833178
SN - 1479-5876
VL - 17
JO - Journal of translational medicine
JF - Journal of translational medicine
IS - 1
M1 - 246
ER -