TY - JOUR
T1 - Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery
AU - Ngamcherdtrakul, Worapol
AU - Sangvanich, Thanapon
AU - Reda, Moataz
AU - Gu, Shenda
AU - Bejan, Daniel
AU - Yantasee, Wassana
N1 - Funding Information:
This work was supported by NCI/SBIR (Contract No HHSN261201300078C), NCI/SBIR (Grant No R44CA217534), NCATS/SBIR (Grant No R43TR001906), the Prospect Creek Foundation, and OHSU’s VPR fund. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are grateful to Dr Robert Kerbel of University of Toronto for breast cancer cell lines, Samuel Mihelic and Brandon Beckman for their contribution in material synthesis and tissue culture work, and Dr Leslie Muldoon for her independent review of the data in this paper as required by OHSU conflict of interest guidelines.
Publisher Copyright:
© 2018 Ngamcherdtrakul et al.
PY - 2018
Y1 - 2018
N2 - Introduction: Long-term stability of therapeutic candidates is necessary toward their clinical applications. For most nanoparticle systems formulated in aqueous solutions, lyophilization or freeze-drying is a common method to ensure long-term stability. While lyophilization of lipid, polymeric, or inorganic nanoparticles have been studied, little has been reported on lyophilization and stability of hybrid nanoparticle systems, consisting of polymers, inorganic particles, and antibody. Lyophilization of complex nanoparticle systems can be challenging with respect to preserving physicochemical properties and the biological activities of the materials. We recently reported an effective small-interfering RNA (siRNA) nanoparticle carrier consisting of 50-nm mesoporous silica nanoparticles decorated with a copolymer of polyethylenimine and polyeth-yleneglycol, and antibody. Materials and methods: Toward future personalized medicine, the nanoparticle carriers were lyophilized alone and loaded with siRNA upon reconstitution by a few minutes of simple mixing in phosphate-buffered saline. Herein, we optimize the lyophilization of the nanoparticles in terms of buffers, lyoprotectants, reconstitution, and time and temperature of freezing and drying steps, and monitor the physical and chemical properties (reconstitution, hydrodynamic size, charge, and siRNA loading) and biological activities (gene silencing, cancer cell killing) of the materials after storing at various temperatures and times. Results: The material was best formulated in Tris-HCl buffer with 5% w/w trehalose. Freezing step was performed at −55°C for 3 h, followed by a primary drying step at −40°C (100 µBar) for 24 h and a secondary drying step at 20°C (20 µBar) for 12 h. The lyophilized material can be stored stably for 2 months at 4°C and at least 6 months at −20°C. Conclusion: We successfully developed the lyophilization process that should be applicable to other similar nanoparticle systems consisting of inorganic nanoparticle cores modified with cationic polymers, PEG, and antibodies.
AB - Introduction: Long-term stability of therapeutic candidates is necessary toward their clinical applications. For most nanoparticle systems formulated in aqueous solutions, lyophilization or freeze-drying is a common method to ensure long-term stability. While lyophilization of lipid, polymeric, or inorganic nanoparticles have been studied, little has been reported on lyophilization and stability of hybrid nanoparticle systems, consisting of polymers, inorganic particles, and antibody. Lyophilization of complex nanoparticle systems can be challenging with respect to preserving physicochemical properties and the biological activities of the materials. We recently reported an effective small-interfering RNA (siRNA) nanoparticle carrier consisting of 50-nm mesoporous silica nanoparticles decorated with a copolymer of polyethylenimine and polyeth-yleneglycol, and antibody. Materials and methods: Toward future personalized medicine, the nanoparticle carriers were lyophilized alone and loaded with siRNA upon reconstitution by a few minutes of simple mixing in phosphate-buffered saline. Herein, we optimize the lyophilization of the nanoparticles in terms of buffers, lyoprotectants, reconstitution, and time and temperature of freezing and drying steps, and monitor the physical and chemical properties (reconstitution, hydrodynamic size, charge, and siRNA loading) and biological activities (gene silencing, cancer cell killing) of the materials after storing at various temperatures and times. Results: The material was best formulated in Tris-HCl buffer with 5% w/w trehalose. Freezing step was performed at −55°C for 3 h, followed by a primary drying step at −40°C (100 µBar) for 24 h and a secondary drying step at 20°C (20 µBar) for 12 h. The lyophilized material can be stored stably for 2 months at 4°C and at least 6 months at −20°C. Conclusion: We successfully developed the lyophilization process that should be applicable to other similar nanoparticle systems consisting of inorganic nanoparticle cores modified with cationic polymers, PEG, and antibodies.
KW - Antibody
KW - Cancer
KW - Lyophilization
KW - Mesoporous silica
KW - Nanoparticles
KW - siRNA
UR - http://www.scopus.com/inward/record.url?scp=85051314616&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051314616&partnerID=8YFLogxK
U2 - 10.2147/IJN.S164393
DO - 10.2147/IJN.S164393
M3 - Article
C2 - 30022824
AN - SCOPUS:85051314616
SN - 1176-9114
VL - 13
SP - 4015
EP - 4027
JO - International journal of nanomedicine
JF - International journal of nanomedicine
ER -