Modeling response of biological signal pathways using a hybrid boolean framework

Young Hwan Chang, Claire Tomlin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mathematical models in systems biology are often constructed by either Ordinary Differential Equation (ODE) modeling or logical (Boolean) modeling. We develop a Hybrid Boolean Model (ODE+Boolean) for biological signal pathways with postulated epigenomic feedback. The basic idea in this model is to combine continuous dynamical systems (an ODE model for already well-known parts of the network) with a discrete transition system (Boolean, for postulated but largely unknown components). We use the existing or well-known ODE model to trigger signal pathways represented by a Boolean model. This framework is easier to validate than a complete ODE model for large and complex signal pathways, for example to find unknown pathways to match the response to experimental data. The advantage of using a Boolean model for the unknown parts of the network is that relatively few parameters are needed. Thus, the framework avoids over-fitting, covers a broad range of pathways and easily represents various experimental conditions. The overall goal of the hybrid model is to predict the behavior of biological signal pathways, thus helping to understand unknown parts of the pathway between experimental results and qualitative/ quantitative results. Extensions are discussed, and numerical examples in biological systems and one engineering example are provided.

Original languageEnglish (US)
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages335-344
Number of pages10
DOIs
StatePublished - 2012
Externally publishedYes
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: Oct 17 2012Oct 19 2012

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume1

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Country/TerritoryUnited States
CityFort Lauderdale, FL
Period10/17/1210/19/12

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Modeling response of biological signal pathways using a hybrid boolean framework'. Together they form a unique fingerprint.

Cite this