Multiomic Metabolic Enrichment Network Analysis Reveals Metabolite-Protein Physical Interaction Subnetworks Altered in Cancer

Benjamin C. Blum, Weiwei Lin, Matthew L. Lawton, Qian Liu, Julian Kwan, Isabella Turcinovic, Ryan Hekman, Pingzhao Hu, Andrew Emili

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.

Original languageEnglish (US)
Article number100189
JournalMolecular and Cellular Proteomics
Volume21
Issue number1
DOIs
StatePublished - Jan 2022
Externally publishedYes

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Multiomic Metabolic Enrichment Network Analysis Reveals Metabolite-Protein Physical Interaction Subnetworks Altered in Cancer'. Together they form a unique fingerprint.

Cite this