Abstract
Human immunodeficiency virus type 1-derived lentivirus vectors bearing the vesicular stomatitis virus G (VSV-G) envelope glycoprotein demonstrate a wide host range and can stably transduce quiescent hematopoietic stem cells. In light of concerns about biosafety and potential germ line transmission, they have been used predominantly for ex vivo strategies, thought to ensure the removal of escess surface-bound particles and prevent in vivo dissemination. Studies presented here instead reveal prolonged particle adherence after ex vivo exposure, despite serial wash procedures, with subsequent transduction of secondary target cells in direct and transwell cocultures. We explored the critical parameters affecting particle retention and transfer and show that attachment to the cell surface selectively protects virus particles from serum complement-mediated inactivation. Moreover, studies with nonmyeloablated murine recipients show that transplantation of vector-exposed, washed hematopoietic cells results in systemic dissemination of functional VSV-G/lentivector particles. We demonstrate genetic marking by inadvertent transfer of vector particles and prolonged expression of transgene product in recipient tissues. Our findings have implications for biosafety, vector design, and cell biology research.
Original language | English (US) |
---|---|
Pages (from-to) | 639-649 |
Number of pages | 11 |
Journal | Journal of virology |
Volume | 81 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Microbiology
- Immunology
- Insect Science
- Virology