Abstract
A new family of bacterial serine-rich repeat glycoproteins can function as adhesins required for biofilm formation and pathogenesis in streptococci and staphylococci. Biogenesis of these proteins depends on a gene cluster coding for glycosyltransferases and accessory secretion proteins. Previous studies show that Fap1, a member of this family from Streptococcus parasanguinis, can be glycosylated by a protein glycosylation complex in a recombinant heterogeneous host. Here we report a tandem affinity purification (TAP) approach used to isolate and study protein complexes from native streptococci. This method demonstrated that a putative glycosyltransferase (Gtf2), which is essential for Fap1 glycosylation, readily copurified with another glycosyltransferase (Gtf1) from native S. parasanguinis. This result and the similar isolation of a homologous twoprotein complex from Streptococcus pneumoniae indicate the biological relevance of the complexes to the glycosylation in streptococci. Furthermore, novel N-acetylglucosaminyltransferase activity was discovered for the complexes. Optimal activity required heterodimer formation and appears to represent a novel type of glycosylation.
Original language | English (US) |
---|---|
Pages (from-to) | 7966-7971 |
Number of pages | 6 |
Journal | Applied and Environmental Microbiology |
Volume | 76 |
Issue number | 24 |
DOIs | |
State | Published - Dec 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Food Science
- Applied Microbiology and Biotechnology
- Ecology