Abstract
The relationship between dephosphorylation and D to I conversoon of skeletal muscle glycogen synthase by synthase phosphatase was investigated using synthase preparations containing 1 to 3 mol of 32P/mol of subunit (90,000 g). Dephosphorylation was analyzed in terms of 32P release from the trypsin-sensitive and trypsin-insensitive phosphorylation regions of synthase. With synthase containing 1 to 2 mol of 32P/90,000 g, dephosphorylation of the trypsin-insensitive region correlated closely with D to I conversion and was more rapid than dephosphorylation of the trypsin-sensitive region. Synthase containing 3 mol of 32P/90,000 g was a relatively poor substrate for the phosphatase since dephosphorylation of both regions, as well as D to I conversion, was slow. With this species of synthase, glucose-6-P (0.1 mM) increased the rates of D to I conversion and dephosphorylation of trypsin-insensitive region. It is concluded that dephosphorylation of the trypsin-insensitive region is responsible for the conversion of synthase D to I.
Original language | English (US) |
---|---|
Pages (from-to) | 5247-5250 |
Number of pages | 4 |
Journal | Journal of Biological Chemistry |
Volume | 253 |
Issue number | 15 |
State | Published - 1978 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology