Reproducible brain-wide association studies require thousands of individuals

Scott Marek, Brenden Tervo-Clemmens, Finnegan J. Calabro, David F. Montez, Benjamin P. Kay, Alexander S. Hatoum, Meghan Rose Donohue, William Foran, Ryland L. Miller, Timothy J. Hendrickson, Stephen M. Malone, Sridhar Kandala, Eric Feczko, Oscar Miranda-Dominguez, Alice M. Graham, Eric A. Earl, Anders J. Perrone, Michaela Cordova, Olivia Doyle, Lucille A. MooreGregory M. Conan, Johnny Uriarte, Kathy Snider, Benjamin J. Lynch, James C. Wilgenbusch, Thomas Pengo, Angela Tam, Jianzhong Chen, Dillan J. Newbold, Annie Zheng, Nicole A. Seider, Andrew N. Van, Athanasia Metoki, Roselyne J. Chauvin, Timothy O. Laumann, Deanna J. Greene, Steven E. Petersen, Hugh Garavan, Wesley K. Thompson, Thomas E. Nichols, B. T.Thomas Yeo, Deanna M. Barch, Beatriz Luna, Damien A. Fair, Nico U.F. Dosenbach

Research output: Contribution to journalArticlepeer-review

643 Scopus citations

Abstract

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1–3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain–behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available—with a total sample size of around 50,000 individuals—to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain–phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.

Original languageEnglish (US)
Pages (from-to)654-660
Number of pages7
JournalNature
Volume603
Issue number7902
DOIs
StatePublished - Mar 24 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Reproducible brain-wide association studies require thousands of individuals'. Together they form a unique fingerprint.

Cite this