Spinal Cord Delineation Based on Computed Tomography Myelogram Versus T2 Magnetic Resonance Imaging in Spinal Stereotactic Body Radiation Therapy

Lubna Hammoudeh, Abdullah M. Abunimer, Ho Young Lee, Edward Christopher Dee, Victoria Brennan S, Pei Yaguang, Kee Young Shin, Yu Hui Chen, Mai Anh Huynh, Alexander Spektor, Jeffrey P. Guenette, Tracy Balboni

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Purpose: Spinal cord delineation is critical to the delivery of stereotactic body radiation therapy (SBRT). Although underestimating the spinal cord can lead to irreversible myelopathy, overestimating the spinal cord may compromise the planning target volume coverage. We compare spinal cord contours based on computed tomography (CT) simulation with a myelogram to spinal cord contours based on fused axial T2 magnetic resonance imaging (MRI). Methods and Materials: Eight patients with 9 spinal metastases treated with spinal SBRT were contoured by 8 radiation oncologists, neurosurgeons, and physicists, with spinal cord definition based on (1) fused axial T2 MRI and (2) CT-myelogram simulation images, yielding 72 sets of spinal cord contours. The spinal cord volume was contoured at the target vertebral body volume based on both images. The mixed-effect model assessed comparisons of T2 MRI- to myelogram-defined spinal cord in centroid deviations (deviations in the center point of the cord) through the vertebral body target volume, spinal cord volumes, and maximum doses (0.035 cc point) to the spinal cord applying the patient's SBRT treatment plan, in addition to in-between and within-subject variabilities. Results: The estimate for the fixed effect from the mixed model showed that the mean difference between 72 CT volumes and 72 MRI volumes was 0.06 cc and was not statistically significant (95% confidence interval, –0.034, 0.153; P = .1832). The mixed model showed that the mean dose at 0.035 cc for CT-defined spinal cord contours was 1.24 Gy lower than that of MRI-defined spinal cord contours and was statistically significant (95% confidence interval, –2.292, –0.180; P = .0271). Also, the mixed model indicated no statistical significance for deviations in any of the axes between MRI-defined spinal cord contours and CT-defined spinal cord contours. Conclusions: CT myelogram may not be required when MRI imaging is feasible, although uncertainty at the cord-to-treatment volume interface may result in overcontouring and hence higher estimated cord dose-maximums with axial T2 MRI-based cord definition.

    Original languageEnglish (US)
    Article number101158
    JournalAdvances in Radiation Oncology
    Volume8
    Issue number3
    DOIs
    StatePublished - May 1 2023

    ASJC Scopus subject areas

    • Oncology
    • Radiology Nuclear Medicine and imaging

    Fingerprint

    Dive into the research topics of 'Spinal Cord Delineation Based on Computed Tomography Myelogram Versus T2 Magnetic Resonance Imaging in Spinal Stereotactic Body Radiation Therapy'. Together they form a unique fingerprint.

    Cite this