Sustaining intravitreal residence with L-arginine peptide-conjugated nanocarriers

Hao Li, Wenzhong Liu, Christine M. Sorenson, Nader Sheibani, Daniel M. Albert, Thulani Senanayake, Serguei Vinogradov, Jack Henkin, Hao F. Zhang

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


PURPOSE. Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (<50 nm in diameter) conjugated with cationic peptides containing L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. METHODS. We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. RESULTS. The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. CONCLUSIONS. We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.

Original languageEnglish (US)
Pages (from-to)5142-5150
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Issue number12
StatePublished - Oct 2017


  • Fluorescence imaging
  • Intravitreal drug delivery
  • Nanoparticle

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Sustaining intravitreal residence with L-arginine peptide-conjugated nanocarriers'. Together they form a unique fingerprint.

Cite this