Technetium Stabilization in Low-Solubility Sulfide Phases: A Review

Carolyn I. Pearce, Jonathan P. Icenhower, R. Matthew Asmussen, Paul G. Tratnyek, Kevin M. Rosso, Wayne W. Lukens, Nikolla P. Qafoku

Research output: Contribution to journalReview articlepeer-review

32 Scopus citations


Technetium contamination remains a major environmental problem at nuclear reprocessing sites, e.g., the Hanford Site, Washington, USA. At these sites, Tc is present in liquid waste destined for immobilization in a waste form or has been released into the subsurface environment. The high environmental risk associated with Tc is due to its long half-life (214 000 years) and the mobility of the oxidized anionic species Tc(VII)O4 -. Under reducing conditions, TcO4 - is readily reduced to Tc(IV), which commonly exists as a relatively insoluble and therefore immobile, hydrous Tc-oxide (TcO2·nH2O). The stability of Tc(IV) sequestered as solid phases depends on the solubility of the solid and susceptibility to reoxidation to TcO4 -, which in turn depend on the (biogeo)chemical conditions of the environment and/or nuclear waste streams. Unfortunately, the solubility of crystalline TcO2 or amorphous TcO2·H2O is still above the maximum contaminant level (MCL) established by the U.S. EPA (900 pCi/L), and the kinetics of TcO2 oxidative dissolution can be on the order of days to years. In addition to oxygen, sulfur can form complexes that significantly affect the adsorption, solubility, and reoxidation potential of Tc, especially Tc(IV). The principal technetium sulfides are TcS2 and Tc2S7, but much less is known about the mechanisms of formation, stabilization, and reoxidation of Tc-sulfides. A common assumption is that sulfides are less soluble than their oxyhydrous counterparts. Determination of the molecular structure of Tc2S7 in particular has been hampered by the propensity of this phase to precipitate as an amorphous substance. Recent work indicates that the oxidation state of Tc in Tc2S7 is Tc(IV), in apparent contradiction to its nominal stoichiometry. Technetium is relatively immobile in reduced sediments and soils, but in many cases the exact sink for Tc has not been identified. Experiments and modeling have demonstrated that both abiotic and biologic mechanisms can exert strong controls on Tc mobility and that Tc binding or uptake into sulfide phases can occur. These and similar investigations also show that extended exposure to oxidizing conditions results in transformation of sulfide-stabilized Tc(IV) to a Tc(IV)O2-like phase without formation of measurable dissolved TcO4 -, suggesting a solid-state transformation in which Tc(IV)-associated sulfide is preferentially oxidized before the Tc(IV) cation. This transformation of Tc(IV)-sulfides to Tc(IV)-oxides may be the main process that limits remobilization of Tc as Tc(VII)O4 -. The efficacy of the final waste form to retain Tc also strongly depends on the ability of oxidizing species to enter the waste and convert Tc(IV) to Tc(VII). Many waste form designs are reducing (e.g., cementitious waste forms such as salt stone) and, therefore, attempt to restrict access of oxidizing species such that diffusion is the rate-limiting step in remobilization of Tc.

Original languageEnglish (US)
Pages (from-to)532-547
Number of pages16
JournalACS Earth and Space Chemistry
Issue number6
StatePublished - Jun 21 2018


  • X-ray absorption spectroscopy
  • cementitious waste forms
  • environmental mobility
  • radioactive waste
  • redox reactivity
  • technetium sulfide

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Atmospheric Science
  • Space and Planetary Science


Dive into the research topics of 'Technetium Stabilization in Low-Solubility Sulfide Phases: A Review'. Together they form a unique fingerprint.

Cite this