The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation

Robert J. Bastidas, Mateusz Kędzior, Robert K. Davidson, Stephen C. Walsh, Lee Dolat, Barbara S. Sixt, Jonathan N. Pruneda, Jörn Coers, Raphael H. Valdivia

Research output: Contribution to journalArticlepeer-review

Abstract

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquiti-nating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1’s acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1‘s acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.

Original languageEnglish (US)
Article numberRP87386
JournaleLife
Volume13
DOIs
StatePublished - Feb 2024

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation'. Together they form a unique fingerprint.

Cite this