TY - JOUR
T1 - The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies
AU - Miyakoshi, Kei
AU - Murphy, Melinda J.
AU - Yeoman, Richard R.
AU - Mitra, Siddhartha
AU - Dubay, Christopher J.
AU - Hennebold, Jon D.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/12
Y1 - 2006/12
N2 - Proteolytic activities are essential for follicular growth, ovulation, as well as for luteal formation and regression. Using suppression subtractive hybridization (SSH), a novel mouse ovary-selective gene (termed protease serine 35, Prss35) was identified. Analysis of the mouse genome database using the Prss35 sequence led to the identification of a homologous protease (protease serine 23, Prss23). PRSS35 possesses general features that are characteristic of serine (Ser) proteases, but is unique in that the canonical Ser that defines this enzyme family is replaced by a threonine (Thr). In contrast, PRSS23 possesses the standard catalytic Ser typical for this family of proteases. As determined by real-time polymerase chain reaction (PCR), the Prss35 mRNA levels increased around the time of ovulation and remained elevated in the developing corpus luteum. Steroid ablation/replacement studies demonstrated progesterone-dependent regulation of Prss35 gene expression prior to follicle rupture. Prss35 gene expression was localized to the theca cells of pre-antral follicles, the theca and granulosa cells of pre-ovulatory and ovulatory follicles, as well as to the developing corpus luteum. In contrast, Prss23 mRNA levels decreased transiently after ovulation induction and again in the postovulatory period. Prss23 gene expression was noted primarily in the granulosa cells of the secondary/early antral follicles. PRSS35 and PRSS23 orthologs in the rat, human, rhesus macaque, chimpanzee, cattle, dog, and chicken were identified and found to be highly homologous to one another (75-99% homology). Collectively, these results suggest that the PRSS35 and PRSS23 genes have been conserved as critical ovarian proteases throughout the course of vertebrate evolution.
AB - Proteolytic activities are essential for follicular growth, ovulation, as well as for luteal formation and regression. Using suppression subtractive hybridization (SSH), a novel mouse ovary-selective gene (termed protease serine 35, Prss35) was identified. Analysis of the mouse genome database using the Prss35 sequence led to the identification of a homologous protease (protease serine 23, Prss23). PRSS35 possesses general features that are characteristic of serine (Ser) proteases, but is unique in that the canonical Ser that defines this enzyme family is replaced by a threonine (Thr). In contrast, PRSS23 possesses the standard catalytic Ser typical for this family of proteases. As determined by real-time polymerase chain reaction (PCR), the Prss35 mRNA levels increased around the time of ovulation and remained elevated in the developing corpus luteum. Steroid ablation/replacement studies demonstrated progesterone-dependent regulation of Prss35 gene expression prior to follicle rupture. Prss35 gene expression was localized to the theca cells of pre-antral follicles, the theca and granulosa cells of pre-ovulatory and ovulatory follicles, as well as to the developing corpus luteum. In contrast, Prss23 mRNA levels decreased transiently after ovulation induction and again in the postovulatory period. Prss23 gene expression was noted primarily in the granulosa cells of the secondary/early antral follicles. PRSS35 and PRSS23 orthologs in the rat, human, rhesus macaque, chimpanzee, cattle, dog, and chicken were identified and found to be highly homologous to one another (75-99% homology). Collectively, these results suggest that the PRSS35 and PRSS23 genes have been conserved as critical ovarian proteases throughout the course of vertebrate evolution.
KW - Corpus luteum
KW - Follicle
KW - Granulosa cell
KW - Ovary
KW - Theca cell
UR - http://www.scopus.com/inward/record.url?scp=33751555610&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751555610&partnerID=8YFLogxK
U2 - 10.1095/biolreprod.106.052290
DO - 10.1095/biolreprod.106.052290
M3 - Article
C2 - 16870946
AN - SCOPUS:33751555610
SN - 0006-3363
VL - 75
SP - 823
EP - 835
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 6
ER -