TY - JOUR
T1 - The impact of electronic health record-based simulation during intern boot camp
T2 - Interventional study
AU - Miller, Matthew E.
AU - Scholl, Gretchen
AU - Corby, Sky
AU - Mohan, Vishnu
AU - Gold, Jeffrey A.
N1 - Funding Information:
This work was funded by the Agency of Healthcare Research and Quality (R01 HS023793).
Publisher Copyright:
© Matthew E Miller, Gretchen Scholl, Sky Corby, Vishnu Mohan, Jeffrey A Gold. Originally published in JMIR Medical Education (http://mededu.jmir.org), 09.03.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Education, is properly cited. The complete bibliographic information, a link to the original publication on http://mededu.jmir.org/, as well as this copyright and license information must be included.
PY - 2021/1
Y1 - 2021/1
N2 - Background: Accurate data retrieval is an essential part of patient care in the intensive care unit (ICU). The electronic health record (EHR) is the primary method for data storage and data review. We previously reported that residents participating in EHR-based simulations have varied and nonstandard approaches to finding data in the ICU, with subsequent errors in recognizing patient safety issues. We hypothesized that a novel EHR simulation-based training exercise would decrease EHR use variability among intervention interns, irrespective of prior EHR experience. Objective: This study aims to understand the impact of a novel, short, high-fidelity, simulation-based EHR learning activity on the intern data gathering workflow and satisfaction. Methods: A total of 72 internal medicine interns across the 2018 and 2019 academic years underwent a dedicated EHR training session as part of a week-long boot camp early in their training. We collected data on previous EHR and ICU experience for all subjects. Training consisted of 1 hour of guided review of a high-fidelity, simulated ICU patient chart focusing on best navigation practices for data retrieval. Specifically, the activity focused on using high- and low-yield data visualization screens determined by expert consensus. The intervention group interns then had 20 minutes to review a new simulated patient chart before the group review. EHR screen navigation was captured using screen recording software and compared with data from existing ICU residents performing the same task on the same medical charts (N=62). Learners were surveyed immediately and 6 months after the activity to assess satisfaction and preferred EHR screen use. Results: Participants found the activity useful and enjoyable immediately and after 6 months. Intervention interns used more individual screens than reference residents (18 vs 20; P=.008), but the total number of screens used was the same (35 vs 38; P=.30). Significantly more intervention interns used the 10 most common screens (73% vs 45%; P=.001). Intervention interns used high-yield screens more often and low-yield screens less often than the reference residents, which are persistent on self-report 6 months later. Conclusions: A short, high-fidelity, simulation-based learning activity focused on provider-specific data gathering was found to be enjoyable and to modify navigation patterns persistently. This suggests that workflow-specific simulation-based EHR training throughout training is of educational benefit to residents.
AB - Background: Accurate data retrieval is an essential part of patient care in the intensive care unit (ICU). The electronic health record (EHR) is the primary method for data storage and data review. We previously reported that residents participating in EHR-based simulations have varied and nonstandard approaches to finding data in the ICU, with subsequent errors in recognizing patient safety issues. We hypothesized that a novel EHR simulation-based training exercise would decrease EHR use variability among intervention interns, irrespective of prior EHR experience. Objective: This study aims to understand the impact of a novel, short, high-fidelity, simulation-based EHR learning activity on the intern data gathering workflow and satisfaction. Methods: A total of 72 internal medicine interns across the 2018 and 2019 academic years underwent a dedicated EHR training session as part of a week-long boot camp early in their training. We collected data on previous EHR and ICU experience for all subjects. Training consisted of 1 hour of guided review of a high-fidelity, simulated ICU patient chart focusing on best navigation practices for data retrieval. Specifically, the activity focused on using high- and low-yield data visualization screens determined by expert consensus. The intervention group interns then had 20 minutes to review a new simulated patient chart before the group review. EHR screen navigation was captured using screen recording software and compared with data from existing ICU residents performing the same task on the same medical charts (N=62). Learners were surveyed immediately and 6 months after the activity to assess satisfaction and preferred EHR screen use. Results: Participants found the activity useful and enjoyable immediately and after 6 months. Intervention interns used more individual screens than reference residents (18 vs 20; P=.008), but the total number of screens used was the same (35 vs 38; P=.30). Significantly more intervention interns used the 10 most common screens (73% vs 45%; P=.001). Intervention interns used high-yield screens more often and low-yield screens less often than the reference residents, which are persistent on self-report 6 months later. Conclusions: A short, high-fidelity, simulation-based learning activity focused on provider-specific data gathering was found to be enjoyable and to modify navigation patterns persistently. This suggests that workflow-specific simulation-based EHR training throughout training is of educational benefit to residents.
KW - Electronic health records
KW - Medical education
KW - Simulation
KW - Training
KW - Usability
UR - http://www.scopus.com/inward/record.url?scp=85103506678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103506678&partnerID=8YFLogxK
U2 - 10.2196/25828
DO - 10.2196/25828
M3 - Article
AN - SCOPUS:85103506678
SN - 2369-3762
VL - 7
JO - JMIR Medical Education
JF - JMIR Medical Education
IS - 1
M1 - e25828
ER -