The temporal structure of REM sleep shows minute-scale fluctuations across brain and body in mice and humans

Lezio S. Bueno-Junior, Maxwell S. Ruckstuhl, Miranda M. Lim, Brendon O. Watson

Research output: Contribution to journalArticlepeer-review

Abstract

Rapid eye movement sleep (REM) is believed to have a binary temporal structure with “phasic” and “tonic" microstates, characterized by motoric activity versus quiescence, respectively. However, we observed in mice that the frequency of theta activity (a marker of rodent REM) fluctuates in a nonbinary fashion, with the extremes of that fluctuation correlating with phasic-type and tonic-type facial motricity. Thus, phasic and tonic REM may instead represent ends of a continuum. These cycles of brain physiology and facial movement occurred at 0.01 to 0.06 Hz, or infraslow frequencies, and affected cross-frequency coupling and neuronal activity in the neocortex, suggesting network functional impact. We then analyzed human data and observed that humans also demonstrate nonbinary phasic/tonic microstates, with continuous 0.01 to 0.04-Hz respiratory rate cycles matching the incidence of eye movements. These fundamental properties of REM can yield insights into our understanding of sleep health.

Original languageEnglish (US)
Article numbere2213438120
JournalProceedings of the National Academy of Sciences of the United States of America
Volume120
Issue number118
DOIs
StatePublished - 2023

Keywords

  • REM sleep
  • facial movements
  • infraslow fluctuations
  • respiration rate
  • theta oscillations

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The temporal structure of REM sleep shows minute-scale fluctuations across brain and body in mice and humans'. Together they form a unique fingerprint.

Cite this