Abstract
We examined the effects of the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], N-ethylpyridinium tetrafluoroborate [EtPy][BF4], and N-ethylpyridinium trifluoroacetate [EtPy][CF3COO] on Pseudomonas fluorescens, a ubiquitous soil bacterium. In the presence of 0.5- and 1% of [BMIM][PF6] or [EtPy][CF3COO] the growth of bacteria was inhibited, whereas exposing them to 1% [EtPy][BF4] increased the lag period wherein bacteria adapt to growth conditions before continuing to grow. However, at higher concentrations (5% and 10%), no growth was observed. The inhibitory effects were evident by a decrease in the optical density of the culture, a decline in the consumption of the carbon source, citric acid, and a change in the size of the bacterium. At concentrations below 1%, [EtPy][BF4] was metabolized by P. fluorescens in the presence of citric acid. Oxidation of the side alkyl-chain of [EtPy][BF4] caused the accumulation of N-hydroxylethylpyridinium and pyridinium as major degradation products.
Original language | English (US) |
---|---|
Pages (from-to) | 1690-1695 |
Number of pages | 6 |
Journal | Chemosphere |
Volume | 82 |
Issue number | 11 |
DOIs | |
State | Published - Mar 2011 |
Externally published | Yes |
Keywords
- Bacteria
- Biodegradation
- Co-metabolism
- Ionic liquids
- Toxicity
ASJC Scopus subject areas
- Public Health, Environmental and Occupational Health
- Pollution
- Chemistry(all)
- Health, Toxicology and Mutagenesis
- Environmental Engineering
- Environmental Chemistry