Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model

Michael Rose, Carolin Curtze, Joseph O'Sullivan, Mahmoud El-Gohary, Dennis Crawford, Darin Friess, Jacqueline M. Brady

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Purpose To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Methods Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. Results For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P =.03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P =.03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Conclusions Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern–based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Clinical Relevance Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents.

Original languageEnglish (US)
Pages (from-to)2110-2116
Number of pages7
JournalArthroscopy - Journal of Arthroscopic and Related Surgery
Issue number12
StatePublished - Dec 2017

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine


Dive into the research topics of 'Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model'. Together they form a unique fingerprint.

Cite this